FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURS			(PART-I MCQs)	30 MINUTES	MAXIMUM MA	RKS: 20		
			(PART-II) 2 HOURS & 30 MINUTES		S MAXIMUM MA	MAXIMUM MARKS: 80		
NOT	E: (i) (ii) (iii) (iv)	Candidate Attempt (Extra atte Use of Sc	e must write Q. No. in ONLY FOUR questi empt of any question of cientific Calculator is	n the Answer Book in accorda ons. ALL questions carry EQU or any part of the attempted quest s allowed.	nce with Q. No. in the Q U AL marks. estion will not be consid). Paper. lered.		
PART-II								
Q. 2.	(a)	Charge is field inter distributio	uniformly distributed usity at a point lying on.	on a line with charge density vertically at a distance y fro	λ . Calculate the electric m the center of charge	(10)		
	(b)	In a uniform $q = -3x10^{-1}$ (i) The m (ii) Find m field.	orm electric field ne ⁹ C is acted upon by a nagnitude of electric f the magnitude and di	ar the surface of earth, a part a force 5x10 ⁻⁶ N. Find Yield. rection of electric force on an	rticle having charge of a electron placed in this			
		(iii) Find t	the ratio of electric for	rce and gravitational force in th	nis case.	(3,3,3)		
	(c)	What is m	eant by point charge?			(1)		
Q. 3.	(a)	State the inductance	Faraday's law of el e due to a current carr	ectromagnetic induction. Using coil in the specific case of	ng this law, find the f solenoid.	(10)		
	(b)	A solenoid The core of 968. Calcu with a dian	d 126cm long is form of the solenoid is fille ulate the inductance o meter of 4.45cm.	ed from 1870 windings carryin d with iron and the effective pe f the solenoid assuming that it	ng a current of 4.36A. ermeability constant is can be treated as ideal	(8)		
	(c)	Write the	importance of Farada	y's law in today's prospective.		(2)		
Q. 4.	(a)	What is N Photoelect physics v photoelect	Modern Physics? Given tric effect. Derive the was successful in tric equation.	e the failure of Classical Physe photoelectric equation and co explanation of photoelectric	sics in explanation of omment how quantum c effect. Also plot	(3,3,5,3)		
	(b)	A beam o and knock the maxim	f radiation with freques to out electrons from the kinetic energy of	tency 3.19×10^{15} hertz is incident. it. If the work function of the the emitted electrons in electron	ent on a metal surface metal is 2.33 eV, find on volts.	(5)		

- (c) What is the difference between ionization energy and work function? (1)
- Q. 5. (a) Differentiate the Metals, Semiconductors and Insulators on the basis of Energy Band Theory. (5)
 (b) What is a PN junction? How it is formed and why it is called a diode. (8)
 - (c) What is a rectifier? How we can use diode as a rectifier? Explain full-wave and half-wave rectification in detail. (7)

Page 1 of 2

PHYSICS, PAPER-II

Q. 6.	(a)	a) Explain how Devison and Germer experimentally proved that a material particle lik accelerated electrons can act as a wave.			
	(b)	Calculate the de.Broglie wavelength of an electron which is accelerated through a potential difference of 100 KV. Should we apply the relativistic correction in this calculation?	(8)		
	(c)	Sketch the probability of occurrence of an electron in Hydrogen atom.	(2)		
Q. 7.	(a)	What is Radioactivity? What changes occur in radioactive nucleus when α , β and γ radiation are emitted from it. How we can differentiate these rays experimentally.	(10)		
	(b)	Define half-life of a radio element. Describe the law of radioactive decay and plot a graph between half life and activity of a radio-nuclide.	(8)		
	(c)	Is proton an elementary particle; comment.	(2)		
Q. 8.	(a)	Define nuclear Fission and Fusion Reactions. What is the source of energy released in these reactions; Justify your answer with examples. Explain Fission Chain Reaction.			
	(b)	A $^{7}Li_{3}$ is bombarded by a proton. Two alpha particles ($^{4}He_{2}$) are produced. Find the reaction energy. Mass of proton = 1.007825amu Mass of $^{7}Li_{3}$ = 7.016003amu Mass of alpha particle = 4.002603amu	(8)		
	(c)	In the given nuclear reaction ${}_{13}Al^{27} + {}_{1}H^1 \longrightarrow {}_{z}X^A + {}_{2}He^4$; What is X?	(2)		

Page 2 of 2