FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

PURE MATHEMATICS, PAPER-I
Roll Number

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100
NOTE:(i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
(ii) Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO questions from SECTION-B. ALL questions carry EQUAL marks.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.
(iv) Use of Scientific Calculator is allowed.

SECTION-A

Q.1. (a) Let H be a normal subgroup and K a subgroup of a group G. Prove that $H K$ is a subgroup of G and $H \cap K$ is normal in K and $\frac{H K}{H} \cong \frac{K}{H \cap K}$.
(b) Show that number of elements in a Conjugacy class $C a$ of an element ' a ' in a group G is equal to the index of its normaliser.
Q. 2. (a) Prove that if G is an Abelian group, then for all $a, b \in G$ and integers $n,(a b)^{n}=a^{n} b^{n}$.
(b) Show that subgroup of Index 2 in a group G is normal.
(c) If H is a subgroup of a group G, let $N(H)=\left\{a \in G \mid a H a^{-1}=H\right\}$ Prove that $N(H)$ is a subgroup of G and contains H.
Q. 3. (a) Show that set C of complex numbers is a field.
(b) Prove that a finite integral domain is a field.
(c) Show that $\bar{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a ring under addition $\bmod 6$ and multiplication mod 6 but not a field. Find the divisors of Zero in \bar{Z}_{6}.
Q. 4. (a) Let F be a field of real numbers, show that the set V of real valued continuous functions on the closed interval $[0,1]$ is a vector space over F and the subset Y of V containing all functions whose nth derivatives exist, forms a subspace of V.
(b) Prove that any finite dimensional vector space is isomorphic to F^{n}.
Q. 5. (a) State and prove Cayley-Hamilton theorem.
(b) Use Cramer's rule to solve the following system of linear equations:

$$
\begin{align*}
& x+y+z+w=1 \tag{10}\\
& x+2 y+3 z+4 w=0 \\
& x+y+4 z+5 w=1 \\
& x+y+5 z+6 w=0
\end{align*}
$$

SECTION-B

Q. 6. (a) Prove that an equation of normal to the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ can be written in the form:

Hence show that the evolute of the curve is

$$
\begin{equation*}
(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3} \tag{10}
\end{equation*}
$$

(b) If and are radii of curvature at the extremities of any chord of the Cardioid $r=a(1+\operatorname{Cos} \theta)$ which passes through the pole, then prove that $\quad=\frac{16 a^{2}}{9}$.

PURE MATHEMATICS, PAPER-I

Q.7. (a) Find an equation of the normal at any point of the curve with parametric equations: $x=a(\operatorname{Cos} t+t \operatorname{Sin} t), \quad y=a(\operatorname{Sin} t-t \operatorname{Cos} t)$.
Hence deduce that an equation of its evolute is $x^{2}+y^{2}=a^{2}$.
(b) Find equations of the planes bisecting the angle between the planes $3 x+2 y-6 z+1=0$ and $2 x+y+2 z-5=0$.
Q. 8. (a) Define a surface of revolution. Write equation of a right elliptic-cone with vertex at origin.
(b) Identify and sketch the surface defined by $x^{2}+y^{2}=2 z-z^{2}$.
(c) If $y=f(x)$ has continuous derivative on $[a, b]$ and S denotes the length of the arc of $y=f(x)$ between the lines $x=a$ and $x=b$, prove that
$S=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$.
Find the length of the parabolas $y^{2} 4 a x$
(i) From vertex to an extremity of the latus rectum.
(ii) Cut off by the latus rectum.

