FEDERAL PUBLIC SERVICE COMMISSION

(b) If

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS MAXIMUM MARKS: 100			
NOTE:(i) (ii) (iii) (iv)		Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper. Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO questions from SECTION-B . ALL questions carry EQUAL marks. Extra attempt of any question or any part of the attempted question will not be considered. Use of Scientific Calculator is allowed.	
SECTION-A			
Q. 1.	(a)	Let H be a normal subgroup and K a subgroup of a group G . Prove that HK is a subgroup of G and $H \cap K$ is normal in K and $\frac{HK}{H} \cong \frac{K}{H \cap K}$.	(12)
	(b)	Show that number of elements in a Conjugacy class Ca of an element ' a ' in a group G is equal to the index of its normaliser.	(8)
Q. 2.	(a) (b) (c)	Prove that if <i>G</i> is an Abelian group, then for all $a,b \in G$ and integers n , $(ab)^n = a^n b^n$. Show that subgroup of Index 2 in a group <i>G</i> is normal. If <i>H</i> is a subgroup of a group <i>G</i> , let $N(H) = \{a \in G \mid aHa^{-1} = H\}$ Prove that $N(H)$ is a	(6) (7)
		subgroup of G and contains H .	(7)
Q. 3.	(a) (b) (c)	Show that set C of complex numbers is a field. Prove that a finite integral domain is a field. Show that $\overline{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a ring under addition mod 6 and multiplication mod 6 but not a field. Find the divisors of Zero in \overline{Z}_6 .	(6) (6) (8)
Q. 4.	(a)	Let F be a field of real numbers, show that the set V of real valued continuous functions on the closed interval $[0,1]$ is a vector space over F and the subset Y of V containing all functions whose nth derivatives exist, forms a subspace of V .	(10)
	(b)	Prove that any finite dimensional vector space is isomorphic to F^n .	(10)
Q. 5.	(a) (b)	State and prove Cayley-Hamilton theorem. Use Cramer's rule to solve the following system of linear equations: $x + y + z + w = 1$	(10) (10)
		x + 2y + 3z + 4w = 0	
		x + y + 4z + 5w = 1	
		x + y + 5z + 6w = 0	
<u>SECTION-B</u>			
Q. 6.	(a)	Prove that an equation of normal to the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ can be written in the form: $y \cos \theta - x \sin \theta = a \cos 2\theta$ Hence show that the evolute of the curve is $(x+y)^{\frac{2}{3}} + (x-y)^{\frac{2}{3}} = 2a^{\frac{2}{3}}$	(10)

are radii of curvature at the extremities of any chord of the Cardioid

 $r = a(1 + Cos\theta)$ which passes through the pole, then prove that

Page 1 of 2

(10)

PURE MATHEMATICS, PAPER-I

Q. 7. (a) Find an equation of the normal at any point of the curve with parametric equations: $x = a(\cos t + t \sin t), y = a(\sin t - t \cos t).$ (10)

Hence deduce that an equation of its evolute is $x^2 + y^2 = a^2$.

- (b) Find equations of the planes bisecting the angle between the planes 3x + 2y 6z + 1 = 0 and 2x + y + 2z 5 = 0.
- **Q. 8.** (a) Define a surface of revolution. Write equation of a right elliptic-cone with vertex at origin. (6)
 - **(b)** Identify and sketch the surface defined by $x^2 + y^2 = 2z z^2$. **(6)**
 - (c) If y=f(x) has continuous derivative on [a,b] and S denotes the length of the arc of y=f(x) between the lines x=a and x=b, prove that

$$S = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

Find the length of the parabolas $y^2 4ax$

- (i) From vertex to an extremity of the latus rectum.
- (ii) Cut off by the latus rectum.
