

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2016** FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

PURE MATHEMATICS				
TIME ALLOWED: THREE HOURS MAX			MAXIMUM MARKS = 100	
NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B a				
	ONE Question from SECTION-C. ALL questions carry EQUAL marks.			
	(ii) All the parts (if any) of each Question must be attempted at one place instead of at differen places.			
	(iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.			
		No Page/Space be left blank between the answers. All the blank pages of Answer Book must		
		be crossed. Extra attempt of any question or any part of the attempted question will not be considered.		
	(v)	Extra attempt of any question or any part of the attempted question will not be considered.		
	(vi)	Use of Calculator is allowed.		
SECTION-A				
Q. 1.	(a)	Prove that the normaliser of a subset of a group G	G is a Subgroup of G . (10)	
	(b)	Let A be a normal subgroup and B a subgroup $<$ $A,B>$ $=$ AB	of a group G . Then prove that (10) (20)	
Q. 2.	(a)	Let a be a fixed point of a group G and consider by $I_a(g) = aga^{-1}$ where $g \in G$.	the mapping I_a : $G \rightarrow G$ defined (10)	
	(b)	Show that I_a is an automorphism of G . Also show Let $M_2(R) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in R \right\}$ be		
		real entries. Show that ($M_2(R)$, +, ·) forms a ring a field?	g with identity. Is ($M_2(R)$, +, ·)	
Q. 3.	(a)	Let $T: X \rightarrow Y$ be a linear transformation from a space Y . Prove that Kernal of T is a subspace.	vector space X into a Vector (10)	
	(b)	Find the value of λ such that the system of equation	ons (10) (20)	
		$x + \lambda y + 3z = 0$		
		$4x + 3y + \lambda z = 0$		
		2x + y + 2z = 0		
		has non-trivial solution.		
		nas non-unviai solution.		

SECTION-B

- Q. 4. (a) Using $\delta \epsilon$ definition of continuity, prove that the function Sin^2x is continuous (10)for all $x \in R$.
 - (b) Find the asymptotes of the curve $(x^2-y^2)(x+2y) + 5(x^2+y^2) + x+y = 0$ **(10) (20)**

Q. 5. (a) Prove that the maximum value of
$$\left(\frac{1}{x}\right)^x$$
 is $o^{1/e}$

PURE MATHEMATICS

- **Q. 6.** (a) Find the area enclosed between the curves $y=x^3$ and y=x. (10)
 - (b) A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in A,B,C. Find the locus of the centre of the sphere OABC for different positions of the plane, O is the origin. (10)

SECTION-C

Q. 7. (a) Determine P(z) where (10)

$$P(z) = (z - z_1)(z - z_2)(z - z_3)(z - z_4)$$
 with $z_1 = e^{i\pi/4}$, $z_2 = \bar{z}_1$, $z_3 = -z_1$ and $z_4 = -\bar{z}_1$.

- Q. 8. (a) Use Cauchy Integral Formula to evaluate $\int_c \frac{c \circ h \, \Xi + s \, i \, 2 \, \Xi}{\Xi \overline{1}^{\dagger}/2} \, d\Xi$ along the simple closed counter C: $|\Xi| = 3$ described in the positive direction.
 - (b) State and prove Cauchy Residue Theorem. (10) (20)
