FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

Roll	Number

STATISTICS

TIM	E ALLOWED:	(PART-I MCQs)	30 MINUTES		MAXIM	UM MARKS: 20	
THREE HOURS		(PART-II)	ART-II) 2 HOURS & 30 MINUTES		MAXIM	MAXIMUM MARKS: 80	
NOT	'E: (i) First a	ttempt PART-I (M	CQs) on separate OI	MR Answer	Sheet which sh	hall be taken back	
	after 30	J minutes.	ontionalonamente	ll not be 	n and:4		
	(II) Uverw (iii) Use of	Calculator is allow	e options/answers wi	li not de giv	en creait.		
			cu.				
		PAR	<u>Γ-Ι ((MCQs) (CO</u>	MPULSO	<u>RY)</u>		
Q.1.	(i) Select the be	est option/answer and	l fill in the appropriate	e Circle 🔘 or	the OMR Answ	ver Sheet. (20x1=20)	
	(ii) Answers give	en anywhere, other t	han OMR Answer Sh	eet, shall not	be considered.		
1.	Two mutually e	exclusive events are	also:				
	(a) Dependent	t events (b)	Independent events	(c) Exha	ustive events (d) None of these	
2.	In which defin	ition of probability	, the condition of m	utually exclu	sive and equall	y likely events is	
	imposed?		~				
2	(a) Subjective	approach (b)	Relative frequency	(c) Class	ical definition	(d) None of these	
3.	In Poisson distr (\mathbf{a}) Moon > Vo	ribution:	Maan - Varianca	(a) Moor	Vorianco ((d) None of these	
4	When sample α	size n becomes large	r and larger and cam	nle estimate	$r \ge v$ at tailed (nective nonulation	
ч.	parameter, this	property of estimate	rs is called:	pie estimate	tends to the res	peerve population	
	(a) Unbiasedn	less (b) (Consistency	(c) Relia	bility (d) None of these	
5.	If the voting p	preference of 100,00	0 registered voters a	re to study,	what kind of sa	impling should be	
	used?						
	(a) Simple Ra	ndom Sampling (b)	Quota Sampling (c) S	tratified Ran	dom Sampling (d) None of these	
6.	If the sampling	frame not available	then which of the sam	pling techni	que could be add	pted with ease:	
	(a) Simple Ra	ndom Sampling	(b) Stratified (d) Normal (d)	ed Random S	ampling		
7	(c) Cluster Ra	ndom Sampling	(a) INONE O	1 these			
7.	(a) Sampling 1	Frame (h)	Unit List (c)	Sample Spac	e (d)	None of these	
8.	A cricket capta	in wins the toss for	three consecutive ma	otches What	is the probabilit	ty that he will call	
0.	correctly for the	e fourth match?		uenes. What	is the probability	ly that he will call	
	(a) 1/2	(b)	1/4 (c)	1/8	(d)	None of these	
9.	If X has binomi	al distribution with	parameter p and n the	n the varianc	e of X is:		
	(a) $n^2 D q$	(b)	nD (c)	pa/n^2	(b)	None of these	
10.	Suppose we have	(~)	hution with 2 aquala	to 5 than th	a nachability of	having exectly 10	
100	Suppose, we ha	ave a Poisson distri	button with <i>r</i> equals	to 5 then th	e probability of	naving exactly 10	
	$rac{-10}{-10}$		~ 105	- 10 -5			
	(a) $\frac{5 \cdot e}{\cdots}$	· (h)	$\frac{5 \cdot e}{2}$	5e	(b)	None of these	
	(a) 10!	(0)	5!	10!	(u)	None of these	
11.	Which of the fo	ollowing statement is	s true for Normal distr	ibution?			
	(a) It is skewe	ed to the right	(b) It has always a	mean of zer	o and a standard	deviation of one	
10	(c) Its mean, n	nedian and mode are	\mathbf{d} equal (d)	None of thes	e		
12.	which of the 10	coefficient in regress	s true?	n coefficient	always have the	same sign	
	(b) A regression	on line always passe	s through origin (c)	The correls	tion coefficient	can exceed than 1	
	(d) None of th	iese					
13.	Testing of hypo	otheses is a phase to	check the validity of:				
	(a) Population	n parameter (b)	Sample estimate	(c) Popu	lation (d)	None of these	
14.	Any set of outc	omes of a random ex	xperiments is called:				
	(a) Event	(b)]	Event space	(c) Samp	ble points (d)	None of these	

Page 1 of 3

STATISTICS

- **15.** When a difference between two groups is statistically significant this means that:
 - (a) The difference is statistically real but of little practical significance
 - (b) The difference is probably the result of sampling variation
 - (c) The difference is not likely to be due to chance variation (d) None of these
- **16.** The degree of freedom for two independent samples will be based on:
- (a) $d.f = n_1 + n_2 2$ (b) d.f = n 1 (c) $d.f = n_1 + n_2 + 2$ (d) None of these 17. As the sample size increases:
 - (a) The standard deviation of the population decreases(b) The population means increases(c) The standard error of the mean decreases(d) None of these
- **18.** With a lower level of significance, the probability of rejecting a true null hypothesis:
 - (a) Remains same (b) Increases (c) Decrease (d) None of these
- **19.** Which one is NOT the characteristic of a random experiment:
 - (a) It has at least two outcomes (b) The number of all possible outcomes are not known in advance
 - (c) It can be repeated any number of times under similar conditions (d) None of these A = 0.5% C L f
- **20.** A 95% C.I for population mean is:

(a)
$$\bar{X} \pm 1.96\sigma^2 / \sqrt{n}$$
 (b) $\mu \pm 1.96\sigma / \sqrt{n}$ (c) $\bar{X} \pm 1.96\sigma / n$ (d) None of these

PART-II

NOTE: (i)	Part-II is to be attempted on the separate Answer Book.		
(ii)	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.		
(iii) Attempt ONLY FIVE questions from PART-II. ALL questions carry EQUAL marks.			
(iv) Extra attempt of any question or any part of the attempted question will not be considered.			
(v)	Use of Calculator is allowed.		

- Q.No.2. (a) Explain the classical definition of probability.
 - (b) Three companies are bidding on a contract. The relative qualities of the companies are such that Company A is twice as good as Company B, and Company B is three times as good as Company C. what is the probability of each company winning the contract? (06)
 - (c) Given P(A) = 0.5 and $P(A \cup B) = 0.7$:
 - (i) Find P(B) if A and B are independent.
 - (ii) Find P(B) if A and B are mutually exclusive.
 - (iii) Find P(B) if P(A | B) = 0.5.
- **Q.No.3.** (a) Two machines A and B produce 45% and 55%, respectively of the total number of ball bearings produced by a certain factory. The percentages of defective output of these machines are 3% and 6%, respectively. If a ball bearing is randomly selected, find the probability that the item is defective. Find the probability that it was produced by the machine A.
 - (b) Suppose that the probability of success in an oral interview for civil services is 0.32. If 10 candidates are being interviewed,
 - (i) What is the probability that none of these will be succeeded?
 - (ii) What is the probability that at least half of the candidates will be succeeded? (06)
- Q.No.4. (a) Assume that the weights (in pounds) of papers discarded each week by different offices in a large secretariat, are normally distributed with mean 9.43 and standard deviation 4.17 pounds. Find the probability that 5 randomly selected offices have mean discarded papers between 10 and 15 pounds. If an office is selected at random, what is the probability that it discarded less than 2 pounds paper during the last week? (08)
 - (b) The number of traffic accidents that occur on a particular stretch of road during a month follows a Poisson distribution with a mean of 6. What is the probability that on a randomly selected month, there are just 2 accidents on that road? Find the probability that the next two months will both result in four accidents each occurring on this stretch of road.

(08)

(04)

(06)

(10)

STATISTICS

- **Q.No.5.** (a) Differentiate between Type-I and Type-II errors.
 - (b) A sociologist develops a test to measure attitudes about public transportation, and 27 randomly selected subjects are given the test, Their mean score is 76.2 and their standard deviation is 21.4. Construct the 95% confidence interval for the mean score of all such subjects.
 - (c) A researcher claims that not more than 65% officers in the public offices come on time in their offices. A random sample of 60 officers was taken on a random working day, It was observed that 37 officers were in time. Test the claim of the researcher at 5% level of significance.

Q.No.6. (a) In an insurance study of worker's deaths in a heavy mechanical complex of a country, monthly fatalities are analysed for two different time periods. Sample data from the both time periods are summarized by the following statistics: $n_1 = 12$, $\overline{x}_1 = 46.42$, $s_1 = 11.07$; $n_2 = 15$, $\overline{x}_2 = 51.06$, $s_2 = 10.39$; (06) At 0.05 level of significance, test the claim that both time periods have the same mean.

(b) An exercise physiologist wants to decide whether a certain type of running program will reduce heart rates. He measures the heart rates of 10 randomly selected people who are then placed on the running program. One month later the exercise physiologist again measures the heart rates of the 10 people. The heart rates, both before and after the running program, are displayed as below: Before Program: 68, 76, 74, 71, 71, 72, 75, 83, 75, 74; After Program: 67, 77, 71, 70, 69, 70, 71, 77, 71, 74. Do the data provide sufficient evidence to conclude that the running program will reduce heart rates? (Use 5% level of significance.)

- Q.No.7. (a) What is the difference between a correlation problem and a regression problem? Also give the situation where we have to use partial correlation rather than simple correlation. (06)
 - **(b)** The general manager of an engineering firm wants to know whether a draftsman's experience influences the quality of his work? He selects 10 draftsmen at random and records their years of work experiences and their work quality rating (excellent = 5, very good = 4, good = 3, average = 2 and poor =1). The data recorded are given as follows: 17 9 9 7 **Experience**: 1 20 2 13 23 10 Rating: 4 4 5 2 4 3 5 2 5 1 Find correlation coefficient between experience and rating. Also interpret the result. (10)
- Q.No.8. (a) What are the advantages of sampling? Differentiate between random and non-random sampling. (06)
 - (b) What do you understand by sampling distribution? For a population of with elements 2, 4, 6, 8, 10, draw all possible random sample of size 2 without replacement and compute sample means. (10)
- Q.No.9. Write note on any FOUR of the following: (04 each) (a) Mathematical expectation of a random variable
 - (b) Applications of the Chi-square distribution
 - (c) Analysis of variance (ANOVA)
 - (d) Stratified random sampling
 - (e) Applications of Statistics in the public health issues
 - (f) Applications of Statistics in economic development

(04)

(06)

(06)

(16)