FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

Roll Number

CHEMISTRY, PAPER-II

ME ALLOWED:	(PART-I MCQs)	30 MINUTES	N	MAXIMUM MARKS: 20
REE HOURS	(PART-II)	2 HOURS & 30 MI	NUTES M	MAXIMUM MARKS: 80
				taken back after 30Minutes.
(ii) Overwritin	ng/cutting of the op	tions/answers will not	oe given credit.	
	culator is allowed			N.
		((MCQs) (COMPI		
(i) Select the best (ii) Answers given	option/answer and finanywhere, other the	ll in the appropriate Circ an OMR Answer Sheet,	le on the OMR shall not be consider	Answer Sheet. (20x1=20) dered.
(a) sp ³ , tetraheda Which of the foll CH ₃	lowing hydrocarbons / CH ₃	(c) sp^2 , pyramics have the lowest dipole	moment?	
(a). H	H (b) C	H ₃ -C=C-CH ₃ (c) CH ₃	$-CH_2-C \equiv CH$	(d) $CH_2=CH-C \equiv CH$
II A ICALLIUII LAIR	sists of several sucus.	15 41	A TOTA MATAITITITITIES	out.
(a) Specific rate	e constant (b) St	eepest (c) Slov	west step	(d) Smaller
Half-life is indep	endent of the	of reactant for fi	st order reaction.	
(a) Order of rea	ection	(b) Initial cond	entration	
(c) Amount of r	radiation absorbed	(d) Specific rat	e constant	
		ondensation polymer?	amine (d)	Glyntal
(a) Dacron	(b) Neoprene ned from phenol by a		annic (d)	Olypun
(a) HCHO			CHO (d)	CH ₃ COCH ₃
Which of the foll	lowing statements be	est describes the relation		
1	OH I	HO CH ₃	NH ■CH ₃	
(a) They are dia				ions of enantiomers.
(c) They are dif	fferent conformation	s of the same compound		
(d) They are ide	entical conformation	s of the same compound	l.	
Why does the $(\Delta H=3 \text{ KJ mol}^{-1})$	exothermic reaction)	C(diamond)——> C	(graphite) does	not occur spontaneously
(a) The density	of graphite is less th	an that of diamond.		
(b) Tetrahedral	configuration is alw	ays more stable than a p	lanar one.	
		aphite has high activation	n energy.	
(d) Graphite ha	s delocalized electro	n.	of the double hon	nd the alkene has
	is of higher priority a	are on the opposite sides	of the double bold	d, the arkene has
configuration.	(L) 7	andiametica (c) Planar	(d) None of these
(a) E configura				(u) Trone or mess
	molecule	s that are mirror images	of one anomer.	(d) None of these
(a) Identical			c) Symmetric	
		of atoms or groups attack		
(a) Configuration	on	(b) Chiral Centre (
	late suggests that " arbocation intermedi		e rate-determining	g step isto the
(a) Directly pro			b) Inversely prop	ortional
		stability of carbocation (
		alogen bond of alkyl hal		

(a) Isotopes (b) Deionized water (c) Metal cations

(d) None of these

14.	Decompo	sition of Ozone takes place according to the following equation:	
		$2O_3(g) \longrightarrow 3O_2(g)$	
		tion for the reaction is rate $K=[O_3]^2[O_2]^{-1}$; what is the order of reaction?	
15	(a) Zero	(5) 2	
15.	Carbohyd	rates have several roles in living organisms e.g.	
		osynthesis in plants (b) Used as fertilizers s Hormones in development (d) Energy transportation	
16.	Which of	the statement is TRUE?	
		loids are found in non-vascular plants (b) Alkaloids are usually acidic in nature	•
		oids are usually basic in nature (d) None of these	
17.	One of the	e following vitamin helps metabolize carbohydrate and maintain appetite.	
18.	(a) Vitar	nin A (b) Vitamin B_2 (c) Vitamin B_1 (d) Folic a es of vitamin B_{12} are:	cid
10.	(a) Citru	s fruits, strawberries, tomatoes, spinach, cabbage and turnips	
	(b) Vege	table oils, wheat germ, liver, and leafy green vegetables	
	(c) Liver	, kidney, meat, fish, eggs and milk	
10	(d) Carot	ene from carrots, vegetables and dairy products	
19.	(a) Carbo	compound or mixture of compounds consisting of repeating structural units is called by drate (b) Vitamin (c) Polymer (d) All of these	ed:
20.		ohydrate (b) Vitamin (c) Polymer (d) All of these such as catalytic cracking, steam cracking and catalytic reforming are involved in:	
	(a) Prepa	ration of ethanol (b) Petrochemicals (c) Food processing (d) Preparation	of gl
			0
		<u>PART-II</u>	
NOT		rt-II is to be attempted on the separate Answer Book.	
	(ii) Ca	ndidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.	Pape
	(iv) Eve	empt ONLY FOUR questions from PART-II. ALL questions carry EQUAL mark	ks.
	(v) Per	ra attempt of any question or any part of the attempted question will not be consider riodic Table of Elements is available on page-4.	ea.
		e of calculator is allowed.	
Q.2.	(a).	Why do we use the three p-orbitals $(2p_x, 2p_y, 2p_z)$ alone to form the three equivalent hybrid orbitals on carbons?	(0:
	(b).	Give an example of an element that undergoes sp hybridization in forming covalent bonds with other elements. What is the value of the angle between the	(0:
		bonds that result from $s - sp$ overlap of atomic orbitals.	
	(c).	What do you mean by luminiscence? What are its types?	(1
Q.3.	(a).	The rate constant of a reaction is $1.2 \times 10^{-3} \text{ sec}^{-1}$ at 30^{0} C and $2.1 \times 10^{-3} \text{ sec}^{-1}$ at 40^{0} C. Calculate the energy of activation of the reaction.	(10
	(b).	What is E/Z system of configuration. Why it is preferred over <i>cis-/trans</i> -system	(10
	. ,	of nomenclature in alkenes?	(2)
Q.4.	(a).	Arrange the following functional groups in increasing order of stability of carbocation?	(05
		$(CH_3)_3 C^+, CH_3^+, CH_3 CH_2^+, (CH_3)_2 CH^+, CH_2 = CH - CH_2^+, C_6 H_5 CH_2^+$	
	(b).	How can we prepare an aldehyde by following reactions. Give atleast ONE	(10
		representative example for each of these reactions.	
		(i) Oxidation of 1° and 2° alcohols (b) Friedel-Crafts acylation (c) Hydration of alkynes (d) Glycol clevage	
	(c).	(c) Hydration of alkynes (d) Glycol clevage Draw the structures of the following compounds:	(05
		(i) benzyl alcohol (ii) 3-pentanol (iii) 2,3-dihydroxyhexane	(0.
		(iv) 2-sulfhydrylbutane (v) 3-pentanethiol	
Q.5.	(a).	What are drying oils. For what purpose they are used?	(10
	(b).	How can you differentiate between trans-unsaturated and cis-unsaturated fatty acids. Which are more hazardous to health? Explain with the help of example.	(10
0.6	(-)		
Q.6.	(a).	Give at least one representative example of the following reactions. (i) Termination reaction (ii) Disproportionation reaction	(10
		(i) Termination reaction (ii) Disproportionation reaction (iii) Addition polymerization (iv) Friedel Crafts alkylation	
		(v) Claisen condensationn	
	(b).	What do you mean by gels? How are they classifed?	(10)

CHEMISTRY, PAPER-II

CHEMISTRY, PAPER-II

- What are the applications of colloids? Q.7. (a).
 - (10)What are the applications of emulsions? Also give the harmful effects of (b). (10)emulsions.
- Q.8. Name the following structures:

CH=CH₂

(iv)

(vii)

(x)

(xiii)

(xix)

CH₃ (iii) (ii)

(20)

СНО

OH

СООН

0 CH₂-CH-C-OH CH NH_2 (v) (vi)

> Br (viii) (ix)

CH₂CH₃ CH₃ НО (xii) (xi)

CH₃(CH₂)₁₄CH₃ (xiv) (xv)

OH HO CH₃-CH-CH₂-CH₂-OH (xvi) ОН xvii)

CH₃CH CHCH2CH3 CH3-CH-CH2-OH H₃C (xx)