

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2014**

Roll	Number

APPLIED MATHEMATICS, PAPER-II

TIME AL THREE H	LOWEI IOURS	D: MAXIMUM MARKS: 10)0	
NOTE:(i) (ii) (iii) (iv (v)	Candia Attemp questic EQUA) No Pa be croo) Extra Use of	date must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper. pt FIVE questions in all by selecting TWO questions from SECTION-A, ON on from SECTION-B and TWO questions from SECTION-C. ALL questions car AL marks. age/Space be left blank between the answers. All the blank pages of Answer Book mu based. attempt of any question or any part of the attempted question will not be considered. f Calculator is allowed.	E ry st	
SECTION-A				
Q. No. 1.	(a)	Solve the initial-value problem $\frac{dy}{dx} = \frac{1}{x + y^2}; y(-2) = 0.$ (10)	D)	
	(b)	Initially there were 100 milligrams of a radioactive substance present. After 6 hours the mass decreased by 3%. If the rate of decay is proportional to the amount of the substance present at any time, find the amount remaining after 24 hours.))	
Q. No. 2.	(a)	Solve $(x^2 + 1)y'' + xy' - y = 0.$ (10)))	
	(b)	Obtain the partial differential equation by elimination of arbitrary functions, $a \sin x + b \cos y = z$ (take z as dependent variable). (10)	D)	
Q. No. 3.	(a)	Solve the partial differential equation $u_{xx} + u_{yy} = u_t$, (10) subject to the conditions and the initial condition, $u(x, y, 0) = W(x, y)$.))	
	(b)	Solve $r + (a+b)s + abt = xy$ by Monge's method. (10)	J)	
SECTION-B				
Q. No. 4.	(a)	Prove that if $A_i, B_j, and C_k$ are three first order tensors, then their product (10) $A_i B_j C_k$ $(i, j, k = 1, 2, 3)$ is a tensor of order 3, while	D)	

If ${}^{A_{i_{1}}}i_{2}i_{3}\cdots i_{n}$ is a tensor of order *n*, then its partial derivative with respect to x_{p} (10)**(b**) that is $\frac{\partial}{\partial x_n} A_{i_1 i_2 i_3 \cdots i_n}$ is also a tensor of order n+1.

 $A_i B_j C_k(i, j = 1, 2, 3)$ form a first order tensor.

Page 1 of 2

APPLIED MATHEMATICS, PAPER-II

Q. No. 5. (a) Show that the transformation $\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -3 & -6 & -2 \\ -2 & 3 & -6 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is orthogonal and (10)

right-handed.

A second order tensor A_{ij} is defined in the system $Ox_1x_2x_3$ by $A_{ij} = x_ix_j$ i, j = 1, 2, 3. Evaluate its components at the point *P* where $x_1 = 0, x_2 = x_3 = 1$. Also evaluate the component A'_{11} of the tensor at *P*.

(b) The Christofell symbols of the second kind denoted by $\begin{cases} m \\ ij \end{cases}$ are defined (10)

$$\begin{cases} m \\ ij \end{cases} = g^{mk} [ij,k] \quad (i, j, k = 1, 2, ...n).$$

Prove that (i)
$$\begin{cases} m \\ ij \end{cases} = \begin{cases} m \\ ji \end{cases}, (ii) [ij,k] = g_{mk} \begin{cases} m \\ ij \end{cases}$$

(iii)
$$\frac{\partial g^{ij}}{\partial x^k} = -g^{im} \begin{cases} i \\ km \end{cases} - g^{jm} \begin{cases} i \\ km \end{cases}.$$

SECTION-C

- **Q. No. 6.** (a) Apply Newton-Raphson's method to determine a root of the equation (10) $f(x) = \cos x - xe^x = 0$ such that $|f(x^*)| < 10^{-8}$, where x^* is the approximation to the root.
 - (b) Consider the system of the equations (10) $2x_1 - x_2 + 0x_3 = 7$ $-x_1 + 2x_2 - x_3 = 1$, $0x_1 - x_2 + 2x_3 = 1$ Solve the system by using Gauss-Seidel iterative method and perform three iterations.

Q. No. 7. (a) Use the trapezoidal and Simpson's rules to estimate the integral (10)

$$\int_{1}^{3} f(x)dx = \int_{1}^{3} (x^{3} - 2x^{2} + 7x - 5)dx .$$
(b) Find the approximate root of the equation $f(x) = 2x^{3} + x - 2 = 0$. (10)

Q. No. 8. (a) Find a 5th degree polynomial which passes through the 6 points given below. (10)

$$\begin{array}{c|c} x \\ \hline x \\ \hline f(x) \\ \hline -9 \\ -41 \\ -189 \\ \hline -173 \\ 9 \\ 523 \\ \hline \end{array}$$

(b) Determine the optimal solution graphically to the linear programming problem, (10) *Minimize* $z = 3x_1 + 6x_2$