FEDERAL PUBLIC SERVICE COMMISSION
COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2014

APPLIED MATHEMATICS, PAPER-II

TIME ALLOWED:
THREE HOURS
MAXIMUM MARKS: 100
NOTE:(i) Candidate must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper.
(ii) Attempt FIVE questions in all by selecting TWO questions from SECTION-A, ONE question from SECTION-B and TWO questions from SECTION-C. ALL questions carry EQUAL marks.
(iii) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
(iv) Extra attempt of any question or any part of the attempted question will not be considered.
(v) Use of Calculator is allowed.

SECTION-A

Q. No. 1. (a) Solve the initial-value problem

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{x+y^{2}} ; \quad y(-2)=0 . \tag{10}
\end{equation*}
$$

(b) Initially there were 100 milligrams of a radioactive substance present. After 6 hours the mass decreased by 3%. If the rate of decay is proportional to the amount of the substance present at any time, find the amount remaining after 24 hours.
Q. No. 2. (a) \quad Solve $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$.
(b) Obtain the partial differential equation by elimination of arbitrary functions, $a \sin x+b \cos y=z$ (take z as dependent variable).
Q. No. 3. (a) Solve the partial differential equation $u_{x x}+u_{y y}=u_{t}$,
subject to the conditions

$$
\begin{align*}
& u(0, y, t)=u(a, y, t)=0 \tag{10}\\
& u(x, 0, t)=u(x, a, t)=0
\end{align*}
$$

and the initial condition, $u(x, y, 0)=\phi(x, y)$.
(b) Solve $r+(a+b) s+a b t=x y$ by Monge's method.

SECTION-B

Q. No.4. (a) Prove that if A_{i}, B_{j}, and C_{k} are three first order tensors, then their product $A_{i} B_{j} C_{k}(i, j, k=1,2,3) \quad$ is a tensor of order 3, while $A_{i} B_{j} C_{k}(i, j=1,2,3)$ form a first order tensor.
(b) If ${ }_{i_{1}} i_{2} i_{3} \cdots i_{n}$ is a tensor of order n, then its partial derivative with respect to x_{p} that is $\frac{\partial}{\partial x_{p}} A_{i_{1} i_{2} i_{3} \cdots i_{n}}$ is also a tensor of order $n+1$.
Q. No. 5. (a) Show that the transformation $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\frac{1}{7}\left[\begin{array}{ccc}-3 & -6 & -2 \\ -2 & 3 & -6 \\ 6 & -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is orthogonal and
right-handed.
A second order tensor $A_{i j}$ is defined in the system $O x_{1} x_{2} x_{3}$ by
$A_{i j}=x_{i} x_{j} \quad i, j=1,2,3$. Evaluate its components at the point P where $x_{1}=0, x_{2}=x_{3}=1$. Also evaluate the component A_{11}^{\prime} of the tensor at P.
(b) The Christofell symbols of the second kind denoted by $\left\{\begin{array}{l}m \\ i j\end{array}\right\}$ are defined
$\left\{\begin{array}{l}m \\ i j\end{array}\right\}=g^{m k}[i j, k] \quad(i, j, k=1,2, \ldots n)$.
Prove that (i) $\left\{\begin{array}{l}m \\ i j\end{array}\right\}=\left\{\begin{array}{c}m \\ j i\end{array}\right\}$, (ii) $[i j, k]=g_{m k}\left\{\begin{array}{c}m \\ i j\end{array}\right\}$,
(iii) $\frac{\partial g^{i j}}{\partial x^{k}}=-g^{i m}\left\{\begin{array}{c}i \\ k m\end{array}\right\}-g^{j m}\left\{\begin{array}{c}i \\ k m\end{array}\right\}$.

SECTION-C

Q. No. 6. (a) Apply Newton-Raphson's method to determine a root of the equation $f(x)=\cos x-x e^{x}=0 \quad$ such that $\left|f\left(x^{*}\right)\right|<10^{-8} \quad$,where $x^{*} \quad$ is the approximation to the root.
(b) Consider the system of the equations
$2 x_{1}-x_{2}+0 x_{3}=7$
$-x_{1}+2 x_{2}-x_{3}=1$,
$0 x_{1}-x_{2}+2 x_{3}=1$
Solve the system by using Gauss-Seidel iterative method and perform three iterations.
Q. No. 7. (a) Use the trapezoidal and Simpson's rules to estimate the integral
$\int_{1}^{3} f(x) d x=\int_{1}^{3}\left(x^{3}-2 x^{2}+7 x-5\right) d x$.
(b) Find the approximate root of the equation $f(x)=2 x^{3}+x-2=0$.
Q. No. 8. (a) Find a $5^{\text {th }}$ degree polynomial which passes through the 6 points given below.

(b) Determine the optimal solution graphically to the linear programming problem,

Minimize $z=3 x_{1}+6 x_{2}$
subject to $4 x_{1}+x_{2} \geq 20$

$$
x_{1}+x_{2} \leq 20
$$

$$
x_{1}+x_{2} \geq 10
$$

$$
x_{1}, x_{2} \geq 0
$$

