

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015

Roll Number

APPLIED MATHEMATICS, PAPER-II

THREE HO	JUKN	· MAXIMUM MAI	KK5: 100
(v) (vi)	Attemp from S marks. Candid All the places. Candida No Pag be cross Extra at	FIVE questions in all by selecting TWO questions from SECTION-A , ONE SECTION-B and TWO questions from SECTION-C . ALL questions carry ate must write Q.No . in the Answer Book in accordance with Q.No . in the Q.Pap parts (if any) of each Question must be attempted at one place instead of at the must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Pap ge/Space be left blank between the answers. All the blank pages of Answer B sed. ttempt of any question or any part of the attempted question will not be considered Calculator is allowed.	EQUAL per. different er. ook must
(VII)	Use of	SECTION-A	
Q. No. 1.	(a)	Solve the initial value problem. $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}, y(1) = 2$	(10)
	(b) S	Solve $y'' - 4y' + 4y = e^{2x}$	(10)
-		the following equations: $d^2 y = dy$	(10)
		$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$ $\frac{d^3y}{dx^3} + \frac{dy}{dx} = \cos ecx$	
	(D)	$\frac{dx^3}{dx^3} + \frac{dx}{dx} = \cos e c x$	(10)
Q. No. 3.		Classify the following: (5 each) (i) $x^2 U_{xx} + (a^2 - y^2) U_{yy} = 0$, $-\infty < x < \infty$, $-a < y < a$	(10)
		(ii) $U_{xx} - 6U_{xy} + 9U_{yy} + 3y = 0$ Solve $\frac{\partial^2 u}{\partial^2 t} = \frac{\partial^2 u}{\partial^2 x} \qquad 0 < x < 5$	(10)
		u(0,t) = u(5,t) = 0 $u(x,0) = x^{2}(x-5)$ $u_{t}(x,0) = 0$	
		SECTION-B	
Q. No. 4.		Prove that if A_i and B_j are two first order tensors, then their product $A_i B_j$ (<i>i</i> , <i>j</i> = 1,2,3) is a second order tensor.	(7)
		If $W(x_1, x_2, x_3)$ is a scalar point function then $\frac{\partial W}{\partial x_1}$ are the components of a first	

(c) Find the invariant of the following second order tensor $\begin{bmatrix} 2 & 4 & -1 \\ 6 & -7 & 10 \end{bmatrix}$ (6)

$$\begin{bmatrix} 6 & -7 & 10 \\ 3 & -4 & 6 \end{bmatrix}$$

APPLIED MATHEMATICS, PAPER-II

Q. No. 5. (a) Verify that the transformation

$$x_{1}' = \frac{1}{15}(5x_{1} - 14x_{2} + 2x_{3})$$
$$x_{2}' = -\frac{1}{3}(2x_{1} + x_{2} + 2x_{3})$$
$$x_{3}' = \frac{1}{15}(10x_{1} + 2x_{2} - 11x_{3})$$

Is orthogonal and right handed. A vector field \vec{A} is defined in the system

$$Ox_1x_2x_3$$
 by $A_1 = x_1^2, A_2 = x_2^2, A_3 = x_3^2$

Evaluate the components A'_{j} of the vector field in the new system $Ox'_{1}x'_{2}x'_{3}$.

- (b) Prove that any second order tensor A_{ij} can be written as the sum of a deviator and an isotropic tensor. (7)
- (c) If $a_{ij} = a_{ji}$ are constants. Calculate.

$$\frac{\partial^2}{\partial X_k \partial X_m} (a_{ij} X_i X_j)$$

SECTION-C

Q. No. 6.	(a)	Find the real root of the equation by using Newton – Raphson's method. $3x - \cos x - 1 = 0$	(10)
	(b)	Solve the following system of equations by Gauss-Seidel method. Take initial approximation as $x_1 = 0$, $x_2 = 0$, $x_3 = 0$. Perform 3 Iterations. $20x_1 + x_2 - 2x_3 = 17$ $3x_1 + 20x_2 - x_3 = -18$ $2x_1 - 3x_2 + 20x_3 = 25$	(10)
Q. No. 7.	(a)	Find the real root of the equation $x^3 - 4x - 9 = 0$ by Regular falsi method. Take the interval of the root as (2,3) and perform 4 iterations.	(10)
	(b)	Find a polynomial which possess through the following points:	(10)
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	()
Q. No. 8.	(a)	Use the langrage's Interpolation formula to find the value $f(12)$ if the values of x and $f(x)$ are given below $ \frac{x: 5 7 11 13}{f(x) 150 392 1452 2366} $	(10)
	(b)	Evaluate $\int_{0}^{3} x\sqrt{1+x^2} dx$ using $\frac{1}{3}$ Simpson's rule and trapezoidal rule for $n = 6$	(10)

(7)

(6)